最新初中数学知识点总结通用(3篇)

会员上传 分享 更新时间: 发布时间: 加入收藏 点赞 下载

最新初中数学知识点总结通用一

初中数学教案推荐度:初中数学教学反思推荐度:初中数学说课稿推荐度:初中数学教学总结推荐度:初中数学竞赛方案推荐度:相关推荐

数学的解题方法是随着对数学对象的研究的深入而发展起来的。以下是小编为大家收集整理的初中的数学解题方法相关内容,欢迎阅读参考。

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

因式分解就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,有提取公因式法、公式法、分组分解法、十字相乘法等等。

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

一元二次方程根的判别不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的`矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

s("content_relate");

【初中的数学解题方法】相关文章:

初中数学的解题方法06-28

数学解题方法初中05-06

初中数学解题方法03-30

初中数学解题方法:换思路解题03-30

初中数学解题方法指导06-28

盘点初中数学解题方法06-28

初中数学解题方法归纳06-28

初中数学解题方法总结06-27

初中数学解题方法大全03-28

最新初中数学知识点总结通用二

(一)教材所处的地位

一元二次方程是中学数学的主要内容,在初中代数中占有重要的地位.实数与代数式的运算、一元一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固.同时,一元二次方程也是以后学习(指数方程、对数方程、三角方程以及不等式、函数、二次曲线等内容)的基础.此外,学习一元二次方程对其他学科也有重要意义。

(二)考纲要求

1、了解一元二次方程及其相关概念,掌握一元二次方程的一般形式,在经历具体情境中估计一元二次方程解的过程,发展估算意识和能力,会用直接开平方法、配方法、公式法、分解因式法解简单的.一元二次方程(数字系数).

2、经历由具体问题抽象出一元二次方程的过程,体会一元二次方程是刻画现实生活中数量关系的一个有效数学模型.3、通过解一元二次方程和列一元二次方程解应用题的过程中体会转化等数学思想方法的运用.

(三)教学重难点及关键:

一元二次方程这部分的重点知识是一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法以及列一元二次方程解决实际生活中的问题;难点则是列一元二次方程解决实际问题和转化思想方法的运用。

教法分析:针对九年级学生复习时的知识结构和心理特征,本节课可选择引导探索归纳法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,归纳总结。这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:总体感知分类探讨问题解决课堂小结布置作业五部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,回顾和获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

相关概念分解因式法一元二次方程配方法丰富的问一元二根的判别式解法题情景次方程公式法一元二次方程分解因式法根的判别式一元二次方程在实际生活中的应用由于中考复习侧重于让学生知识系统化,所以首先让学生讨论回顾这部分知识的学习内容,列出知识网络图,使学生在整体上感知把握这部分知识内容。所以本节课主要复习:

一元二次方程的有关概念,一元二次方程的解法,一元二次方程的判别式,一元二次方程根与系数的关系这四部分内容,至于一元二次方程的应用下节课再复习。

最新初中数学知识点总结通用三

初中数学中考复习计划推荐度:中考备考复习研讨会心得推荐度:中考语文备考心得体会推荐度:中考备考方案推荐度:中考语文备考心得体会推荐度:相关推荐

初中数学中考备考建议

导语:初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化所学内容的关键环节。重视并认真完成这个阶段的教学任务,不仅有利于升学学生巩固、消化、归纳数学基础知识,提高分析、解决问题的能力,而且有利于就业学生的实际运用。下面是小编收集整理的初中数学中考备考建议,仅供大家参考!

初三毕业班总复习一般分成三轮复习,如何提高数学总复习的质量和效率,是每位毕业班数学教师必须面对的问题。下面谈谈一些对中考复习的体会和认识及一些具体做法。

一:第一轮复习:全面复习基础知识,加强基本技能训练这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。第一轮的复习主要以增城区的《中考数学复习导学》为主要资料进行,做到如下四点。

1、重视课本,系统复习。(按知识块组织复习)

伊纲靠本,以指导书为纲领,以课本为主,把书中的内容进行归纳整理,使之形成体系;搞清课本上的每一个概念、公式、法则、性质、公理、定理;抓住基本题型,记住常用公式,理解来龙去脉,对经常使用的数学公式,要进一步了解其推理过程,并对推导过程中产生的一些可能变化进行探究.使学生更好地掌握公式,胜过做大量习题,而且往往会有意想不到的效果。

2、夯实基础,学会思考。

xx市数学中考试题中,基础分值占的最多。因此,初三数学复习教学中,必须扎扎实实地夯实基础,使每个学生对初中数学知识都能达到“理解”和“掌握”的要求;在应用基础知识时能做到熟练、正确和迅速。让学生学会思考,从根本上提高成绩,解决问题。会思考是要学生自己“悟”出来,自己“学”出来的,教师能教的,是思考问题的方法和策略,然后让学生用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。

3、强调通法,淡化技巧,数学基本方法过关

中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如待定系数法,求交点,配方法,换元法等操作性较强的'数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

4、重视对数学思想理解及运用的渗透

要对数学思想有目的,有机会的渗透,不可能全到第二轮复习中才讲。如告诉了自变量与因变量,要求写出函数解析式,或者用函数解析式去求交点等问题,都需用到函数的思想,教师要让学生加深对这一思想的深刻理解,多做一些相关内容的题目。再如方程思想,它是利用已知量与未知量之间联系和制约的关系,通过建立方程把未知量转化为已知量;再如数形结合的思想。

二、第二轮的复习,以专题突破、能力提升为主。

主要分为

(1)实际应用

(2)动态几何

(3)分类讨论

(4)开放性题

(5)探索规律

(6)阅读理解

三、第三轮的复习中考前的模拟练习与冲刺,查漏补缺。

四、复习中的几点策略与建议

1.教师必须明确方向,突出重点,对中考“考什么”、“怎样考”应了若指掌,总复习能否取得较佳的效果,是要看教师对《课标》、《考试说明》理解是否深透,研究是否深入,把握是否到位,对于删去的内容就不要再花时间复习了,对于调整的内容按调整后的要求进行复习。

2.培养学生兴趣。要发挥学生主体地位作用,教会学生掌握复习策略(如做题,看书,独立思考,反思的好习惯),提高复习效果,让学生参与解题活动,参与教学过程。鼓励学生多进行神算子做题,刷题。

3.重视复习课中的典型的例题的讲解。例题不是习题。通过例题让学生掌握学习方法,对例、习题能举一反三,触类旁通,变条件、变结论、变图形、变式子、变表达方式等。习题最好来源于课本,对课本上题目进行演变,如适当改变题目的条件,改变题目的问法,看看会得出什么结果,这就是“变式训练”;

运用一题多拓,培养思维的深刻性

引导一题多变,深化思维的灵活性

提倡一题多解,提高思维的独创性

4.不能让学生过早地做综合练习题及中考模拟题,而应以课本的编排体系为主线进行系统复习.选题要难度适宜,举一反三,重在基础的灵活运用和掌握分析解决问题的思维方法;

5.课堂容量:提倡增大课堂复习容量,不是追求面面俱到,而是重点内容得用多时间,非重点内容敢于取舍,集中精力解决学生困惑的问题,增大思维容量,少做无用功,重点突出,让大部分学生学有新意,学有收获,学有发展。

s("content_relate");

【初中数学中考备考建议】相关文章:

中考数学备考建议12-18

中考数学的备考建议12-23

中考数学备考的建议03-12

初中政治中考备考建议12-07

初三数学中考备考建议12-03

初三数学中考备考的建议12-03

初中生中考备考建议02-04

初中生中考备考建议11-02

初中数学中考备考方案03-13

推荐阅读:

  最新捐款捐物感谢信(9篇)

  精选英语手抄报_EnjoyEnglish简短(四篇)

  精选坏账准备会计分录怎么写(四篇)

  有关自我陈述报告高中怎么写(四篇)

  最新确认合同无效纠纷 确认合同无效的法律规定(三篇)

  2025年商品买卖合同管辖权 地方买卖合同(27篇)

最新初中数学知识点总结通用(3篇).docx

将本信息的Word文档下载到电脑

推荐度:

点击下载文档

文档为docx格式
221381
最新初中数学知识点总结通用(3篇)