数学八年级上册教学设计

会员上传 分享 更新时间: 发布时间: 加入收藏 点赞

数学八年级上册教学设计5篇

在课程改革的今天,我们要改变的是教案的模式化,只备“课”不备“人”,只备“形”不备“神”,只备结果,不备过程,教师的教案充其量只是教师的“备忘录”。下面小编给大家带来关于数学八年级上册教学设计,方便大家学习

数学八年级上册教学设计1

教学目标

1.理解并掌握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。

2.培养学生的分析能力和类推能力。

3.体验所学知识与现实生活的联系,能应用所学知识解决生活中简单的问题,从中获得价值体验。

教学重难点

教学重点:理解并掌握除数是整数的小数除法的计算方法。

教学难点:理解商的小数点定位问题。

教学工具

ppt课件

教学过程

一、复习引入

1.填空:(PPT课件)

2.(PPT课件出示)

(1)引导学生列式:224÷4

(2)为什么这样列式?(路程÷时间=速度)

(3)说一说:224÷4这道题是怎样计算的?(教师板演)

2 合作探究,获取新知

8.2.1教学教材第67页例1。

(1)课件出示例1。

从图中知道哪些信息?学生观察图片,交流图片数学信息。盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到χ+3=9

学生自己先列出方程,然后指名回答。

如何解方程?要求盒子中一共有多少个皮球,也就是求等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

(2)出示第67页分析图示,学生观察图示,交流想法。

根据学生的汇报,板书解方程的过程:

(3)为什么方程两边同时减去3,而不是别的数?

引导学生得出结论:因为,两边减去3以后,左边刚好剩下一个χ,这样,右边就刚好是χ的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个χ即可。

追问:χ=6带不带单位呢?让学生明白χ在这里只代表一个数值,因此不带单位。

(4)如何检验χ=6是不是正确的答案?引导学生学习检验方程的解得方法,根据学生回答板书。

【板书】:

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。利用等式的基本性质,可以帮助我们解方程。

【注意】:在书写的过程中写的都是等式,而不是递等式。

(5)认识、区别方程的解和解方程。

①使方程左右两边相等的未知知数的值,叫做方程的解,刚才,χ=6就是方程χ+3=9的解。而求方程的解的过程叫做解方程,刚才,想出办法求出χ+3=9的过程就是解方程。

【板书】:使方程左右两边相等的未知知数的值,叫做方程的解

求方程的解的过程叫做解方程。

②方程的解和解方程这两个概念说起来差不多,但它们的意义却大不相同,它们之间的有何不同?

在小组内议一议,明确,方程的解是一个具体的值,而解方程是一个求解的过程。

③刚才我们把χ=6代入方程中,得到方程左边=右边,说明χ=6是方程χ+3=9的解。

8.2.2教学教材第68页例2。

(1)利用等式不变的规律,我们再来解一个方程。

出示例2:解方程3χ=18

怎样才能求到1个χ是多少呢?

观察示意图,互相讨论,指名回答。

在方程两边同时除以3,得到χ=6。

让学生打开书68页,把例2中的解题过程补充完整。

为什么两边同时除以的是3,而不是其它数呢?

两边同时除以3,刚好把左边变成1个χ。

使学生明确:在方程的两边同时除以一个不为0的数,方程左右两边仍然相等。

(2)组织学生动手检验。

(3)这是我们解方程常用的两种方法,想不想用它们来试一试呢?

8.2.3教学教材第68页例3。

(1)出示:解方程20-χ=9

(2)指名学生板演,解出方程20-χ=9的解。

(3)交流归纳解方程的方法。

(4)小结:等式两边加上相同的式子,左右两边仍然相等。

3 深化理解,拓展应用

(1)随堂练习

①、完成“做一做”的第1、2题,集体评讲,强调验算。

②、思考:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?

等式保持不变的规律。

(2)拓展练习

亮亮今年9岁,爸爸今年37岁。几年后妈妈的年龄是小华的3倍?

4 自主评价,全课总结

你觉得自己今天学会了什么?还有什么不太理解的地方?

讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

课后习题

练习十五1—5题。

板书

所以,χ=6是方程的解。

使方程左右两边相等的未知数的值,叫方程的解。

求方程的解的过程叫解方程。

数学八年级上册教学设计5

教学目标

知识与技能:

在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

过程与方法:

通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

情感态度与价值观:

通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

教学重难点

教学重点:

掌握平行四边形的面积计算公式,并能正确运用。

教学难点:

平行四边形面积计算公式的推导。

教学工具

多媒体课件,平行四边形纸片,剪刀,学具袋

教学过程

教学过程设计

1 复习旧知

请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)

2 情境引入

(一)、故事激趣

同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)

(二)、学生思考、猜测

学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积

3 探究新知

(一)利用方格,初步探究

1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

课件出示:比较两个图形的大小,然后引进格子图。

师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)

2、同桌交流方法

3、生汇报想法

4、通过数方格你发现了什么?

生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等

5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?

如果,我用数方格的方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?

(二)动手操作,深入探究

1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?

2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。

(板书:割补法)

3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

4、展示学生作品:不同的方法将平行四边形变成长方形。

提问:观察拼出的长方形和原来的平行四边形,你发现了什么?

平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

引导学生用字母来表示:S表示面积,a表示底,h表 示 高 。那 么 面 积 公 式就是S = ah

(边说边板书)

4 学以致用

(一).课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

(板书:S=ah=6×4=24㎡)

(二).课件出示练习题,学生独立完成。

1.

2.有一块地近似平行四边形,底43米,高20.1米,面积是多少平方米?

3.填表

4.判断:

(1) 平行四边形的底是7米,高是4米,面积是2 8米。 ( )

(2) a=5分米,h=2米,S=100平方分米。 ( )

5.下面对平行四边形面积的计算对吗?

6×3=18(平方米) ( )

6.下面对平行四边形面积的计算对吗?

8×7=56(平方分米) ( )

7.思考题:你有几种方法求下面图形的面积?

课后小结

回想一下刚才我们的学习过程,你有什么收获?

计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推的?


数学八年级上册教学设计

推荐阅读:

  班主任教育心得范文

  九年级校园安全班会课教案2024

  抵押担保借款合同

  风扇租赁合同范本

  2024年立春时间几点几分

  安全与法制主题班会范文模板

数学八年级上册教学设计.docx

将本信息的Word文档下载到电脑

推荐度:

点击下载文档

文档为docx格式
221381
数学八年级上册教学设计